Creating Functional Water Environments

The VTAC Committee:

Site-Specific Riparian Management Guidance Documents

Michael Liquori, VTAC Chair and others...

March 6, 2013

VTAC Participants

Members

- Mike Liquori, SWC (Chair)
- Peter Ribar, CTM
- Dr. Kevin Boston, OSU
- Dr. Matt O'Connor, OEI
- Dr. Kate Sullivan, HRC (through 2011, now USEPA)
- Mark Lancaster, 5C
- Richard Gienger, public
- Dave Hope, Consultant

Agency Representatives

- Bill Short, CGS
- Bill Stevens, NMFS
- Bryan McFadin, NCRWQCB
- Drew Coe, CVRWQCB
- Stacy Stanish, Kevin Shaffer, Dr.
 Stephen Swales, DFW
- Pete Cafferata, CAL FIRE

CAL FIRE/BOF Assistance

- Crawford Tuttle (through 2011)
- Bill Snyder
- Duane Shintaku
- Dennis Hall
- George Gentry

Presentation Outline

- 1. Background Information
- 2. Board Framework
- 3. VTAC Guidance Document Overview
- 4. Next Steps: Pilot Projects
- 5. Key Outstanding Challenges (unscoped)

Private and Public Land Ownership within the Coastal Anadromy Zone

85-90% of remaining CCC coho salmon exist on private forestlands

Technical Basis for ASP Rules

Mike Liquori

Doug Martin

Robert Coats

Lee Benda

David Ganz

Scientific Literature Review of Forest Management Effects on Riparian Functions for Anadromous Salmonids

Chapter 1
INTRODUCTION

for

The California State Board of Forestry and Fire Protection

September 2008

1. ASP Rule 14 CCR § 916.9(v)

Section (v) of the 2009 ASP rules established a regulatory pathway for voluntary sitespecific riparian design

Section V Rules achieve riparian goals through spatially-explicit, context-specific objectives

Established by actual site conditions, not rule assumptions

Creating Functional Water Environments

Board Framework for Guidance Documents

ASP Rule 14 CCR § 916.9(v)

- based on scientific principles
- watershed or stream reach scale

 promote <u>more immediate</u> short-term functional responses

- 1 Principles, guidelines & procedures
- 2 Permitting efficiencies
- 3 Reduce regulatory uncertainty
- 4 Broaden Incentives

- Oct 2010 thru Dec 2012
 - ✓ 15 meetings
 - ✓ Stakeholder Survey
 - ✓ 2 Field Tours
 - ✓ Pre-Consultation Guidelines
 - ✓ Guidance Document

- 2013 Pilot Phase
 - ✓ 1-2 representatives / project
 - ✓ Informal email and conference call updates

Site-Specific Riparian Zone Management:

Section V Guidance

Anadromous Salmonid Protection Rule Section V

Technical Advisory Committee (VTAC)

December 2012 Sacramento, California

Creating Functional Water Environments

Guidance Document Structure & Organization

- I. Introduction
- II. Goals, Incentives & Desired Outcomes
- III. Conceptual Framework
- IV. Pre-Consultation Guidelines
- V. Introduction to Analytical Pathways
 - I. Classification Matrix
 - II. Situational Scenarios
 - III. Analytical Design
- VI. Submission Requirements
- VII.Proposal Processing
- VIII. Monitoring Strategies
- IX. References

Appendices

- Analytical Pathways
 - Standardized Rule Matrix (and example)
 - Situational Scenarios (and example)
 - Analytical Design Process
- Pre-Consultation Guidelines Form
- Watershed Context Information
- Channel Type Definitions
- ASP Rules/Map
- Channel Type Definitions and Diagrams
- Glossary

Management Objectives

Management ?	Objective?	Suitability Criteria?
Protect?	Minimizedisturbancedoallow@naturaldecoveryd	Sites on the dirajectory of oward overy?
Maintain?	Maintainı iparian-dependent ille exchange i functions i la	Sites I where I function I status I s I sated I good. I
Improve™	Improveperformancedrical responsed imingefor deneador de la company de l	Sites I where I there I is I potential I to I promote/enhance I aquatic I ecological I services I
Restore	Restorediparian-dependent? functionsdodevelsdecessarydor? sustainingdquaticdecological? services.?	Sites where function status is a ted fair? to poor, and where delivery potential is? rated medium to thigh.?
Generally? Available?	Providefilexibilityfinfaddressing@otherfinigher-priorityfissues@	Existing at onditions and at rends at hat? indicate downs ensitivity at orange articular? variable.?

CAL FIRE

California Forest Improvement Program (CFIP)

Forest Legacy Program (FLP)

California Forest Stewardship Program

SWRCB 319(h), other grants

Calif. State Parks

Habitat Conservation Fund grants Land and Water Conservation Fund grants

USDA

Conservation Reserve Program

NRCS

Environmental Quality Incentives Program Wildlife Habitat Incentive Program (WHIP) Conservation Technical Assistance (CTA) Wetlands Reserve Program (WRP)

US EPA

Region 9 grants and funding

Wildlife Conservation Board

VTAC Pre-Consultation Guidelines

- Quickly determine the <u>potential</u> success of a proposed Section (v) project
- Structured Form (field handout)
- Voluntary
- Does not receive formal agency approval

Creating Functional Water Environments

Pathway 1) Classification Matrix Approach

- A relatively simple assessment procedure
 - Generally applicable goals
 - Common ecological processes & functions
 - Sets priorities among functions
- The project scale is relatively small
- Detailed technical expertise is cost-prohibitive

Riparian Classification

Geomorphic Classification

		Site Condition			
		Good Fair Poor			
nal :y	High	Protect	Maintain	Improve	
nction riorit	Mod.	Maintain	Improve	Improve	
Ful	Low	Generally Available	Generally Available	Maintain	

Rule Matrix

Segment Objectives

	Segment Objectives						
Wood Temperature Nutrients Eros							
Protect	Maximize retention of recruitable wood	Maximize retention of vegetation that blocks incoming solar radiation		Prevent and avoid ground disturbances that may disturb banks and/or concentrate runoff			
Maintain	Minimize removal of recruitable wood	Minimize reduction in shade	Minimize reduction in nutrient supply	Minimize ground disturbances that may disturb banks and/or concentrate runoff			
Improve	Carefully identify individual tree selection that encourage desired silvicultural responses	Carefully identify individual tree selection that minimizes reduction in shade	Encourage treatments that promote balanced primary production and establishment of high nutrient species	Consider treatments that support recovery of eroding lands (e.g. planting, biotechnical stabilization, etc)			
Generally Available	Treatment constraints for this function are minimized	Treatment constraints for this function are minimized	Treatment constraints for this function are minimized	Treatment constraints for this function are minimized			

Geomorphic Classification

			Functional Priority Rating			
Class	Size	Type*	Wood	Temperature	Nutrients	Erosion
I	Large	Regime	Moderate	Low	Low	High
		Braided	Moderate	Low	Low	High
		Pool Riffle	High	Low	Low	High
	Medium	Regime	Moderate	Moderate	High	High
		Braided	Moderate	Moderate	High	High
		Pool Riffle	Moderate	Moderate	High	High
		Forced Pool Riffle	High	Moderate	High	High
		Plane Bed	High	High	High	Moderate
		Step-Pool	Moderate	High	Moderate	Low
		Cascade	Low	High	Moderate	Low
	Small	Pool Riffle	High	High	High	High
		Forced Pool Riffle	High	High	High	High
		Plane Bed	High	High	High	Moderate
		Step-Pool	Moderate	High	Moderate	Low
		Cascade	Low	High	Moderate	Low
II	All	Pool Riffle	Moderate	Moderate	Moderate	High
		Forced Pool Riffle	High	Moderate	Moderate	High
		Plane Bed	Low	Moderate	Low	Moderate
		Step-Pool	Low	Moderate	Low	Low
		Cascade	Low	Moderate	Low	Low
III	All	Colluvial	Varied	Moderate	Low	Varied
Hotspots	All	Debris Flow Sources	High	Moderate	Low	High
		Debris/alluvial Fans	High	Moderate	Low	High
		Tributary Junctions	Moderate	Moderate	High	Moderate
		Class II Transition	Low	High	High	Moderate
		Sensitivity Zone	75% SPTH	33 feet	66 feet	Variable (min 33 feet

Inherent Riparian Function

Composition of Vegetation

 $C = Conifer \ge 70\% conifer$

H = Hardwood [≥ 70% hardwood]

M = Mixed [all other cases]

Relative Tree Size

S = Smaller than functional

L = Larger than functional

M = Mixed

Relative Stand Density

D = Differentiating (active mortality)

F = Fully Stocked (mortality eminent)

U = Under stocked (open, active growth)

			Inheren	al Levels	
Rip	oari	an	Wood	Nutrient	Thermal
Class		S	Supply	Supply	Loading
С	S	D	Moderate	Poor	Good
С	S	F	Poor	Poor	Good
С	S	U	Poor	Moderate	Moderate
С	L	D	Good	Moderate	Good
С	L	F	Good	Moderate	Good
С	L	U	Moderate	Moderate	Moderate
С	М	D	Good	Moderate	Good
С	М	F	Good	Moderate	Good
С	М	U	Moderate	Moderate	Moderate
Н	S	D	Moderate	Good	Good
Н	S	F	Poor	Good	Good
Н	S	U	Poor	Good	Moderate
Н	L	D	Moderate	Good	Good
Н	L	F	Poor	Good	Good
Н	L	U	Poor	Good	Moderate
Н	М	D	Moderate	Good	Good
Н	М	F	Poor	Good	Good
Н	М	U	Poor	Good	Moderate
М	S	D	Moderate	Moderate	Good
М	S	F	Moderate	Moderate	Good
М	S	U	Poor	Good	Moderate
М	L	D	Good	Moderate	Good
М	L	F	Good	Good	Good
M	L	U	Moderate	Good	Moderate
М	M	D	Good	Good	Good
M	Μ	F	Good	Good	Good
М	M	U	Moderate	Good	Moderate

Riparian Classification

Site Condition Good **Fair** Poor Maintain High Protect Improve Functional Priority Channel lassificati Mod. Maintain Improve Improve Generally Generally Maintain Low Available Available

Wood	Temperature	Nutrients	Erosion
11000	1 GIII P GI G CHI G	ITALITOTICS	

	Segment Objectives						
	Wood	Temperature	Nutrients	Erosion			
Protect	Maximize retention of recruitable wood	Maximize retention of vegetation that blocks incoming solar radiation	Maximize retention of existing high nutrient vegetation				
Maintain	Minimize removal of recruitable wood	Minimize reduction in shade	Minimize reduction in nutrient supply	Minimize ground disturbances that may disturb banks and/or concentrate runoff			
Improve	Carefully identify individual tree selection that encourage desired silvicultural responses	Carefully identify individual tree selection that minimizes reduction in shade	Encourage treatments that promote balanced primary production and establishment of high nutrient species	Consider treatments that support recovery of eroding lands (e.g. planting, biotechnical stabilization, etc)			
Generally Available	Treatment constraints for this function are minimized		Treatment constraints for this function are minimized	Treatment constraints for this function are minimized			

Segment Objectives							
	Wood	Temperature	Nutrients	Erosion			
Protect	Maximize retention of	Maximize retention of	Maximize retention of	Prevent and avoid			
	recruitable wood	vegetation that blocks	existing high nutrient	ground disturbances			
		incoming solar	vegetation	th <mark>a</mark> t may disturb			
		radiation		banks and/or			
				concentrate runoff			
Maintain	Minimize removal of	Minimize reduction in	Minimize reduction in	Minimize ground			
	recruitable wood	shade	nutrient supply	disturbances that may			
				disturb banks and/or			
				concentrate runoff			
Improve /	Carefully identify	Carefully identify	Encourage treatments	Consider treatments			
	individual tree	individual tree	that promote	that support recovery			
	selection that	selection that	balanced primary	of eroding lands (e.g.			
\	encourage desired	minimizes reduction	production and	planting, biotechnical			
	silvicultural responses	in shade	establishment of high	stabilization, etc)			
			nutrient species				
Generally		Treatment constraints					
Available	for this function are	for this function are	for this function are	for this function are			
	minimized	minimized	minimized	minimized			
				[·			

P1 Submission Requirements

- 1. Description of the current riparian condition
- 2. Description of the evaluation area (watershed scale)
- 3. Identification of beneficial functions
- 4. Evaluation of design effects to the beneficial functions
- 5. Description of the site-specific proposal
- 6. Implementation schedule
- 7. Simple monitoring plan

Creating Functional Water Environments

Pathway 2) Situational Scenarios

- Common situations
- Use of 3rd-party recovery documents to provide the context and project goals
 - NMFS 2012 Recovery Plan Documents
 - Habitat Conservation Plans
 - Watershed Analyses
 - etc

Document Elements

For each Situation Scenario:

- Overview
- Typical Suitability Criteria
- Design Factors to Consider
- Treatment Options
- Hazards (red-flags)
- Hypothetical Example(s)
- Submission Requirements

Relatively Closed Canopy Riparian Corridors lacking Nitrogen-Fixing Species or with Low Primary Productivity

Biotic Diversity & Nutrients

- a sufficient number of nitrogenfixing deciduous trees <u>distributed</u> <u>at key locations within the stream</u> <u>network;</u>
- a sufficient number of riparian canopy gaps that support primary and aquatic macroinvertebrate production while balancing effects on other riparian functions.

(Wilzbach et al. 2005; Kiffney and Roni 2007; Modenke and Ver Linden 2007; Poor and McDonnell, 2007; others)

Scientific Literature Review of Forest Management Effects on Riparian Functions for Anadromous Salmonids

Chapter 2
BIOTIC & NUTRIENTS

for

The California State Board of Forestry and Fire Protection

September 2008

Submission Requirements

- 1. Evaluate existing site conditions.
- 2. Assess watershed conditions.
 - Use existing information sources, CI assessment
- 3. Determine desired ecological functions.
- 4. Identify the applicable situational scenario.
- 5. Determine if additional expertise is needed.
- 6. Additional considerations.
 - Issues to address Section (v) analysis requirements:
 - Identification of the potential effects to beneficial functions.
 - Detailed description

Creating Functional Water Environments

Pathway 3) Analytical Design

- Conflicting Goals or Complex Issues
- Existing planning reports
 - Direct or adjacent
- Technical Experts and/or Robust Datasets
- Large-scale analysis
- Pathways I or II are not appropriate

Analytical Design

Riparian Functional Assessment

Effectiveness Assessment

Management Objectives

Implementation

Riparian Design

Creating Functional Water Environments

Other Key Elements

Document Appendices

- Section V Rule Language
- Pre-Consultation Guidelines
- MAP OF THE ASP RULE GEOGRAPHIC SCOPE
- WATERSHED CONTEXT INFORMATION
- CHANNEL TYPE DEFINITIONS AND DIAGRAMS
- EXAMPLE USING THE CLASSIFICATION MATRIX PATHWAY

VTAC Training

- RPF/Landowner and Agency training sessions.
 - Summer and Fall 2013.
 - RPF/landowner sessions to be field oriented.

 VTAC website for RPF/landowner education.

Creating Functional Water Environments

Next Steps Pilot Projects

VTAC Potential Pilot Projects

- A. Green Diamond Resource Company
 - Canopy gaps & other studies
- B. Campbell Timberland Management
 - Wood loading
- **C.** Collins Pine Company
 - Fire Risk
- D. LaTour Demonstration State Forest
 - Fire Risk
- **E.** Jackson Demonstration State Forest??

Recent THPs with Site-Specific Mgmt

Coast Ranges Region

- <u>Slaughterhouse THP</u> (1-10-020 MEN), submitted by Campbell Timberland Management.
 - 17 large wood enhancement sites (35 trees felled).
- <u>Kestrel THP</u> (1-11-087 SON), submitted by Gualala Redwoods, Inc.
 - 4 large redwood trees to be excavated or felled into dry part of SF Gualala River.
 - Done under DFW 1600 Agreement; requested by Review Team agencies.
- <u>Piccolotti THP</u> (1-10-030 MEN), submitted by The Conservation Fund
 - Per CDFW requirement, the 50 foot wide no-cut zone adjacent to Big River will be subjected to a <u>limited understory thinning</u> conducted to increase individual conifer growth rates.

Recent THPs with Site-Specific Mgmt

Northern Interior Region (V2 Pre-Consultation with DFW)

- Maidenhair THP, 2-10-031 TEH, submitted by SPI.
 - Standard (non-ASP) width WLPZs for Class I and II watercourses, with no operations in the buffers.
- North McMullen THP, 2-10-049 SHA, submitted by LaTour Demonstration State Forest.
 - 75 foot no-cut Class I WLPZ.
- <u>Tower THP</u>, 2-10-056-SHA, submitted by W.M. Beaty and Associates.
 - 50 to 100 foot Class I WLPZs based on slope, with 50% overstory canopy retention.
- **Howard Springs THP**, 2-10-082 TEH, submitted by SPI.
 - 100 foot Class I WLPZs in 2 units, with a 50 foot no-cut for the first 50 feet and 50% overstory canopy retention for the second 50 feet.

Creating Functional Water Environments

Outstanding Challenges

- New Practices
- Sensitive Resource

Integrated Monitoring Strategy

- <u>Compliance</u> Did they do it as designed?
- <u>Implementation</u> Did the action lead to the desired effect (or not)?
- <u>Effectiveness</u> Does the effect support the ecology?
- <u>Validation</u> are our assumptions correct?

effective, systematic monitoring is beyond any single landowner

We need a coordinated approach.

(provides incentive too...)

Section (v)(10):

"pilot projects and guidance shall address cumulative and planning watershed impacts"

Our Approach:

- Existing Literature
- THP Section
- Other Processes

Additional Opportunities

- Offsite Mitigation
 - Collaborative enhancement efforts
 - Promotes priority enhancement sites

- Simplified Permitting
 - Make it easier to do good things

- Set a Track Record
 - Increase willingness to engage by landowners

VTAC Survey Summary

Likeliness to propose project under Section V rule

Stewardship Actions Carbon Sequestration Water Quality T&E Habitat Pollutant Trading Channel Restoration

How can we leverage these markets to improve incentives that promote riparian stewardship?

Ecosystem Service Markets

Existing Markets

Carbon Market
Conservation Easements
Timber & Pulp

New Markets

TMDL Watersheds Mitigation Banks

mike@soundwatershed.com